Uzay mekaniği

Uzay mekaniği olarak da adlandırılan, astrodynamics , alanında olduğu astronomi ve uzay bilimleri , fen Bunun çalışma ile fırsatlar hareketi . Özellikle roket veya uzay aracı gibi uzay nesnelerinin yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler dahil yörüngelerini tahmin etmeyi amaçlayan özel bir gök mekaniği dalıdır .

Temel Kanunlar

Kepler'in yasaları

İlk uzay mekaniği yasaları gezegenlerin hareketini gözlemleyerek deneysel keşfedildi Kepler erken XVII inci  yüzyılın. Kepler hareketinin yasalarını oluştururlar . Burada ana sonuçları hatırlayalım:

Bu yasalar, yörünge hareketinin en basit hesaplamalarında hala iyi bir yaklaşımla kullanılmaktadır. Bu, yörünge hareketinin referans türüdür ve özellikle gerçekçi hareketler, bir Kepler hareketinin zayıf pertürbasyonları olarak hesaplanır.

Merkezi kuvvet hareketi

Kepler hareketi, merkezi kuvvetin hareketidir . Bu, özellikle elips durumunda yazılan bir enerjinin korunumu yasasını ifade eder :

olan hızlı olarak vücudun yörünge , gövde ve çeken merkezi arasındaki mesafe. Diğer gösterimler aynıdır.

Yörünge parametreleri

Bir uzaysal nesnenin hareketini klasik Kartezyen koordinatlarla tanımlamak yerine, hareketin uzayda bir elips üzerinde gerçekleştiği gerçeğini kullanacağız . Böylece klasik Kartezyen 6 koordinat kümesini yörünge parametreleri adı verilen 6 sayılık bir dizi ile değiştirebiliriz :

Bu 2 koordinat seti arasında geçişe izin veren açık formüller vardır (gelecek referans).

Dünya yörüngesindeki nesnelerin ( uydular ve uzay enkazları ) yörünge parametreleri sürekli olarak izlenir ve standart bir formatta yayınlanır (bkz. TLE, İki Hatlı Öğeler ).

Uzamsal mekanikte kıyaslamalar

Yörünge parametrelerini kullanarak bir yörüngeyi tanımlamak için, seçilen Galilean referans çerçevesi yer merkezli olacaktır; eksenleri, ilk yaklaşım olarak sabitlenmiş olan Dünya'nın Kuzey-Güney ekseni, ilk eksen (belirli bir anda ekvator düzlemi ile ekliptik düzlem arasındaki kesişme) ve sonuncusu, üçünün doğrudan bir ortonormal koordinat sistemi oluşturmasıdır. .

Kepler hareketi rahatsız

Uzay mekaniğindeki standart hesaplamalar, özellikle araca etki eden tek kuvvetin karasal çekim olduğu ve Dünya'nın küresel ve homojen olduğu varsayıldığı bir Kepler çerçevesinde gerçekleştirilir. Bu varsayımların ikisi de aslında yanlıştır; Bununla birlikte deneyimler, merkezi çekim dışındaki kuvvetlerin neden olduğu ivmelerin Kepler ivmesine kıyasla zayıf olduğunu göstermektedir. Bu nedenle diğer güçlerin hareket bozuklukları olduğunu düşünüyoruz.

Rahatsızlık kuvvetleri

Yerçekimi kuvvetleri

Bu kuvvetler yalnızca uydu etrafındaki kütlelerin dağılımına bağlıdır ve bir konum potansiyelinden türetilir. Not bu potansiyeli.

Dünya potansiyeli

Keplerian durumunda, Dünya küreseldir ve karasal potansiyel basitçe hesaplanır ve değerlidir . Gerçek durumda, entegrasyon hacmi çok daha karmaşıktır. Kullanılabilir bir forma sahip olmak için, bu potansiyeli küresel harmonikler şeklinde yazıyoruz ve elde ediyoruz:

Bu ifadede, karasal ekvator yarıçapıdır, Dünya'nın n mertebesinin zonal harmoniği olarak adlandırılan bir eylemsizlik sabitidir ve aynı zamanda tesseral harmonikler olarak adlandırılan atalet sabitleridir , Legendre'nin , Legendre'nin ortak işlevi olan n mertebesinin polinomudur . , Ve yarıçap vektör, boylam ve potansiyel hesaplanır noktasının jeosentrik enlem vardır.

Bu gelişmenin ilk terimi , direklerdeki düzleşmeyi tercüme eder. Bu terim, Keplerian potansiyeline göre göreceli bir yoğunluğa sahiptir , ancak aşağıdaki terimler dahilidir .

Ay veya Güneş kaynaklı çekim

Aracın koordinatlara ve yeni çekici cisme, Ay veya Güneş'e sahip olduğu bir referans alınarak , bu cisimden kaynaklanan ek potansiyel yazılır:

ile:

Keplerian potansiyeli ile ilgili büyüklük sırası Güneş ve Ay içindir.

Yerçekimsiz kuvvetler

Bu kuvvetler, öncekilerden farklı olarak, bir potansiyelden kaynaklanmaz. Bu sefer bu kuvvetlerin neden olduğu ivmeleri hesaplayacağız.

Atmosferik sürtünme

Atmosferik sürtünme kuvveti, atmosfer ile araç arasındaki etkileşimden kaynaklanmaktadır. Uydu araçlarının yüksek hızları göz önüne alındığında, bu rakımlarda atmosferin düşük yoğunluğuna rağmen bu kuvvet 1.500 km rakıma kadar ihmal edilemez  .

Makinenin hızının ekseni boyunca yaratılan ve dolayısıyla bu hıza zıt olacak kuvvet şöyle yazılır:

Bu bağlamda, bir atmosfer yoğunluğu olan bir ölçüm yüzeyi, atmosfere araç göreceli hızını, sürükleme katsayısı araç ve kendi kütlesinden.

Diğer koordinat eksenleri boyunca benzer yapıdaki kuvvetler de vardır ( örneğin kaldırma kuvvetleri ), ancak etkileri genellikle daha zayıftır. Rakım bağlı olarak, bu sürtünme kuvveti gelen Kepler potansiyelinin olduğu ile ilgili yoğunlukları vardır için .

Güneş radyasyonu basıncı

Bu kuvvet, fotonların araçla etkileşiminden kaynaklanmaktadır. Güneş'ten gelen direk radyasyon basıncına bağlı ivme şöyle yazılabilir:

Uydu, ışıklı ve 0 değilse ise 1'e eşit bir katsayı , bir referans yüzeyi olan basıncı direkt güneş radyasyonu yüzey birimi başına, ortalama 4.63 x 10 olmak değer -6 , N m -2 , refleksivitenin katsayısı , mertebesinde , ve güneş araç yönünün birim vektör.  

Bozuk hareket denklemleri

Lagrange denklemleri Gauss denklemleri

Yörünge manevraları

Manevraların genel prensibi, dikkate alınan uzay nesnesinin itme araçlarını kullanarak bir veya daha fazla yörünge parametresini değiştirmektir .

Makinenin kütlesindeki itme kuvveti ve varyasyon

İtici gazlı bir tahrik motoru olması durumunda, itme kuvveti şöyle yazılabilir:

Gelen malzeme akış oranı yerçekimi sabiti ve belirli bir ivme .

Genellikle manevralar sırasında, bu itme yörünge periyoduna kıyasla ihmal edilebilir bir süre boyunca gerçekleşir. Daha sonra bir itme itkisi hipotezini yapabiliriz: daha sonra bu itmenin anında oluştuğunu düşünürüz. Bu varsayım , manevra sırasında itici kütlesindeki değişimi tahmin etmek için Tsiolkowski denklemini kullanmayı mümkün kılar :

Bu durumda , manevra sırasında hız modülünün ve itici yakıtın başlangıç ​​kütlesinin değişmesidir .

Yörüngenin şeklini değiştirme

Amaç şekil parametrelerini değiştirmek için ve en aza indirgeyerek, itici tükettiler. Biz için olduğunu göstermektedir verilen, eğer minimum itme hızı ile doğru çizgidedir ve hız maksimumdur.

Manevralar bu nedenle 2 koşulu yerine getiren periastronda gerçekleştirilir. Şeklini değiştirmek için uygun manevralar yörüngede sonra apoastro modifiye oluşur.

Bu optimal manevrayı kullanan transfer yörüngesine bir örnek , Hohmann yörüngesidir .

Yörünge düzleminin modifikasyonu

Bu sefer parametreleri değiştirmeye çalışıyoruz ve . Yalnızca değişiklik yapmak isteniyorsa , bu, yörüngeyi bu çizgi etrafında döndürmek için yükselen veya alçalan düğüm seviyesinde manevra gerçekleştirme sorunudur . Biz gitmek istiyorum eğime kadar eğime , gerekli hız varyasyonu bulanmış olduğunu göstermek:

manevra düğümündeki hızdır.

Modifikasyonları, kısmen karmaşık ve itici gazlar açısından maliyetlidir.

Referanslar

  • Fransız hukuku: kararname 20 Şubat 1995 uzay bilimi ve teknolojisi terminolojisi ile ilgili.
  • B. Ekip, JY Pouillard, Uzay mekaniği , Toulouse, ENSAE Toulouse,1997( Yeni baskı  1996, 1997), 111  , s. ( ISBN  2-84088-028-8 )Uzamsal mekanik üzerine ISAE broşürü .
  • O. Zarrouati, Space Trajectories , Toulouse, CNES - Cépadues Editions
  • MN.Sanz, AE.Badel, F.Clausset, Fizik: Hepsi Bir 1 st yıl , Paris, Dunod - Ben, 2002-2003 725 entegre  s. ( ISBN  978-2-10-007950-6 ve 2-10-007950-6 )

Ayrıca görün

İlgili Makaleler

<img src="https://fr.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">